OXIDATION OF 1,4-DIHYDROPYRIDINES

II.* REACTIVITY DURING THE OXIDATION OF CHLORANIL

Ya. R. Uldrikis, A. O. Kumerova, and G. Ya. Dubur

UDC 547.822'827'83:542.943

The rate constants for the oxidation of 17 mono- and polynuclear 1,4-dihydropyridine derivatives with chloranil were determined. The constants obtained were compared with the results of fermentative and electrochemical oxidation.

There are studies [2, 3] available on the determination of the rate constant for the oxidation of 2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydropyridine with chloranil. In the oxidation [4] of a number of 1,4-dihydropyridines with a peroxidase $-H_2O_2$ system or with 2-(p-chlorobenzylidene)-1,3-indanedione [1], we have shown the inhibiting effect of an α substituent and the accelerating effect of α -methyl groups. The effect of a β substituent depended both on the nature of the substituent and on the hydrogen acceptor.

In the present study we have determined the rate constants for the oxidation of 1,4-dihydropyridines with chloranil. Primarily previously described compounds were used as the 1,4-dihydropyridine derivatives (both mono- and polynuclear); XI and XV were obtained by a known method [5], while III was synthesized from benzoylacetone and urotropin. The UV spectra of XI and XV coincide with the UV spectra of their analogs (there is a characteristic deepening of color in alkaline media), the UV spectrum of III coincides with the spectrum of the known 4-methyl derivative (V), and only the 4-methyl group causes a hypsochromic shift of the long-wave maximum. This was also observed [6] for the β -acetyl analogs of these compounds.

Just as in fermentative oxidation [4], the reactions were carried out at 37°C. The concentration was measured spectrophotometrically at the long-wave absorption maximum characteristic for 1,4-dihydropyridines, which vanishes on oxidation. In this case, the polynuclear 1,4-dihydropyridine derivatives (IX-XVII) even undergo a sharp change in color [5]. The results, which are presented in Tables 1 and 2, show that the investigated reaction is second-order; this is in agreement with the data for II [3]. Difficulties arose because of the slight solubility of some of the compounds (particularly XIII, XIV, XV, and XVII); this possibly reduced the accuracy of the measurements.

In a comparison of the results with approximate data [1], complete coincidence of the indexes that characterize the effect of the structure on the reactivity was established, even though a different solvent was used. On comparison of the results of the oxidation of 1,4-dihydropyridine derivatives by chemical, polarographic [7], and fermentative [4] methods, it is seen that, regardless of the oxidation mechanism, γ -unsubstituted compounds are the most active. The extreme ease of the oxidation of X indicates that the absence of β -electron-acceptor groups lowers the stability of 1,4-dihydropyridine. This is in agreement with the known data on the stability of such compounds [8, 9]. For the same reason, XI, i.e., a β -phenyl-carbamoyl derivative in which the stabilizing effect of the carbonyl group is weakened, is extremely active.

A comparison of the effect of β substituents shows that compounds that have an acetyl or ethoxy-carbonyl group are more active than compounds that have a cyano group. In the oxidation with chloranil, just as in electrochemical oxidation [7], compounds that have a β -acetyl group are oxidized more readily than compounds that have a β -ethoxycarbonyl group. The reverse activity ratio is observed in the fermen-*See [1] for communication I.

Institute of Organic Synthesis, Academy of Sciences of the Latvian SSR, Riga. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 691-694, May, 1973. Original article submitted June 22, 1972.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1. Rate Constants for the Oxidation of 1,4-Dihydropyridine Derivatives (I-VIII) with Chloranil in Benzene at 37°C

1-VIII

Com- pound	R	K.	Syn- thetic meth- od	Initial conen. ratio of I- VIII* and chloranil	Mea- surement made at \(\lambda\), nm	Exptl. time, min	Am. of I-VIII con- sumed in reaction, %	k·10 ² , liter· mole ⁻¹ .
I III IV V VI VII VIII	$\begin{array}{c} COCH_3\\ COOC_2H_5\\ COC_6H_5\\ CN\\ COC_6H_5\\ COCH_3\\ COC_2H_5\\ COOC_2H_5\\ COOC_2H_5\\ \end{array}$	H H H CH ₃ CH ₃ CH ₃	10 11 † 12 13 14 15 16	1:1 1:3 1:3 1:3 1:3 1:3	393 360 385 342 370 379 354 333	55 63 65 309 276 327 443 315	68,1 63,3 92,2 78,4 62,5 14,3 15	630 450 290 33 23 2,6 2,1 1,8

^{*}The initial concentration of I-VIII was 10⁻⁴ M.

TABLE 2. Rate Constants for the Oxidation of (IX-XVII) 5-Oxo-1,4-di-hydroindeno[1,2-b]pyridine Derivatives with Chloranil in Benzene at 37°C

IX-XVII

Compound	R	R'	R''	Synthetic method	Initial concn. of IX-XVII, (mole/liter) · 105	Initial ratio of the concn. of IX-XVII and chloranil	Measurement made at λ, nm	Exptl. time, min	Amount of IX-XXVII consumed in the reaction, $\frac{\sigma_0}{\sigma_0}$	k·102, liter. mole 1. sec 1
IX XI XII XIII XIV XV XVI* XVII†	CH ₃ C ₆ H ₅ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	-COOC ₂ H ₅ H -CONHC ₆ H ₅ -COC ₆ H ₅ -COCH ₃ -COOC ₂ H ₅ -CN -CN -C ₆ H ₄ -CO- H ₂ C (CH ₃) ₂ CH ₂ CO-	$\begin{array}{c} H \\ C_6H_5 \end{array}$	17 8 	10,0 10,0 5,0 10,0 3,7 2,3 4,5 10,0 2,0	1:3 1:3 1:3 1:3 1:8 1:13 1:7 1:3 1:15	467 451 451 447 455 452 445 500 447	50 16 110 100 84 101 121 420 405	90,5 87 73,5 75,7 70,4 76 62,3 86,6 50	415 960 190 94 86 82 45 33 14

^{*11-}Phenyl-10,12-dioxo-5,10-dihydrodiindeno[1,2-b:2',1'-e]-pyridine.

tative oxidation of dihydropyridines [4] and in the reduction of ylideneindanediones [1]. When β -benzoyl groups are introduced, electrochemical oxidation [7] in all cases proceeds more readily than in the case of acetyl analogs. The same order is observed in chemical oxidation in the case of V and VI and also XII and XIII, but γ -unsubstituted compound III is oxidized with greater difficulty than its acetyl analog (1), probably because of steric effects.

[†] The description of the synthesis is given in the experimental section.

^{†7,7-}Dimethyl-10-phenyl-9,11-dioxo-5,6,7,8,9,10-hexahydro-11H-indeno[1,2-b]quinoline.

[‡] The description of the synthesis is given in the experimental section.

The effect of the o-benzoylene group (see Table 2) remains unclear. The introduction of one substituent in place of the carbethoxy group gives contradictory results: the reactivity of the γ -unsubstituted compounds (II and IX) falls, and the reactivity of the γ -phenyl-substituted compounds (VIII and XIV) increases. The introduction of a second substituent (XVI) lowers the reactivity.

EXPERIMENTAL

2-Methyl-4-phenyl-3-cyano-5-oxo-1,4-dihydroindeno[1,2-b]pyridine (XV). A solution of 1.17 g (5 mmole) of 2-benzylidene-1,3-indanedione and 0.45 g (5.5 mmole) of β -aminocrotonitrile in 15 ml of glacial acetic acid was refluxed for 5 min. The mixture was cooled, and the precipitate was removed by filtration and washed with acetic acid to give 1.3 g (87%) of an orange substance with mp 247-248° (from acetic acid). Found: C 80.5; H 4.7; N 9.4%. C₂₀H₁₄N₂O. Calculated: C 80.5; H 4.7; N 9.4%. UV spectrum, λ_{max} , nm (log ϵ), in ethanol: 229 shoulder (4.33), 234 (4.37), 253 shoulder (4.38), 260 (4.38), 302 shoulder (3.64), 320 (3.62), 343 (3.67), 467 (3.40); in ethanol + NaOH: 241 shoulder (4.34), 245 (4.35), 270 shoulder (4.09), 278 (4.10),312 (3.79), 333 (3.66), 368 (3.64), 533 (3.79), 563 (3.81).

2-Methyl-4-phenyl-3-phenylcarbamoyl-5-oxo-1,4-dihydroindeno[1,2-b]pyridine (XI). This compound (red substance, in 50% yield), with mp 255-260° (from acetic acid), was similarly obtained from 2-benzyl-idene-1,3-indanedione and β-aminocrotonic acid anilide. Found: C 78.9; H 5.5; N 7.1%. $C_{25}H_{20}N_2O_2$. Calculated: C 78.9; H 5.3; N 7.4%. UV spectrum, λ_{max} , nm (log ε), in ethanol: 233 (4.40), 263 (4.38), 301 shoulder (3.82), 315 shoulder (3.70), 345 (3.54), 475 (3.45); in ethanol + NaOH; 236 (4.45), 247 shoulder (4.42), 281 shoulder (4.11), 317 (3.96), 370 shoulder (3.68), 530 shoulder (3.72).

2,6-Dimethyl-3,5-dibenzoyl-1,4-dihydropyridine (III). A solution of 1.5 g (0.011 mole) of urotropin, 4.2 g (0.05 mole) of ammonium acetate, and 19.5 g (0.12 mole) of benzoylacetone in 60 ml of ethanol was refluxed for 1 h. It was then cooled, and the bright-yellow precipitate was removed by filtration to give 12.2 g (64%) of III with mp 195-200° (from dioxane). Found: C 79.4; H 6.0; N 4.1%. $C_{21}H_{19}NO_2$. Calculated: C 79.4; H 6.0; N 4.4%. UV spectrum in ethanol, λ_{max} , nm (log ϵ): 252 (4.16), 315 (3.58), 413 (3.83).

Measurement of the Reaction Rates. Solutions of tetrachloro-p-benzoquinone (chloranil) and 1,4-dihydropyridine derivatives (I-XVII, see Tables 1 and 2) were prepared. The temperature of the solutions was brought up to 37° in a thermostat, and the solutions were mixed. The changes in the optical density of the reaction mixture were measured with an SF-4 spectrophotometer with a thermostated cuvette. The starting data and the results of the measurements are combined in Tables 1 and 2.

LITERATURE CITED

- 1. G. Ya. Dubur, and Ya. R. Uldrikis, Khim. Geterotsikl. Soedin., 83 (1970).
- 2. E. A. Braude, J. Hannah, and R. Linstead, J. Chem. Soc., 3249 (1960).
- 3. A. S. Lindsey, S. E. Hunt, and N. G. Savill, Polymer, 7, 479 (1960).
- 4. G. Ya. Dubur, A. O. Kumerova, and Ya. R. Uldrikis, Izv. Akad. Nauk Latv. SSR, No. 7, 73 (1970).
- 5. V. Petrow, J. Saper, and B. Sturgeon, J. Chem. Soc., 2134 (1949).
- 6. P. J. Brignell, U. Eisner, and P. Farrell, J. Chem. Soc., B, 1083 (1966).
- 7. Ya. P. Stradyn', G. Ya. Dubur, Yu. I. Beilis, Ya. R. Uldrikis, and A. F. Korotkova, Khim. Geterotsikl. Soedin., 84 (1972).
- 8. G. Ya. Vanag and É. Ya. Ozola, Zh. Obshch. Khim., 32, 1151 (1962).
- 9. K. Tsuda, Y. Satch, N. Ikekawa, and H. Mishima, J. Org. Chem., 800 (1956).
- 10. M. Scholtz, Ber., 30, 2297 (1897).
- 11. S. Checchi, Gazz. Chim. Ital., 89, 2151 (1959).
- 12. R. Lukeš and J. Kuthan, Coll. Czech. Chem. Commun., 26, 1422 (1961).
- 13. G. Issoglio, Atti della Reale Academia delle Science di Torino, 41, 950 (1906); Chem. Zentrallblat, 1, 408 (1907).
- 14. E. Knoevenagel and W. Ruschhaupt, Ber., 31, 1025 (1898).
- 15. A. Hantzsch, Ann., 215, 1 (1882).
- 16. R. Schiff and J. Puliti, Ber., 16, 1607 (1883).
- 17. E. I. Stankevich and G. Ya. Vanag, Dokl. Akad. Nauk SSSR, 140, 607 (1961).
- 18. G. Ya. Dubur and G. Ya. Vanag, Izv. Akad. Nauk Latv. SSR, Ser Khim., 287 (1962).
- 19. É. I. Stankevich and G. Ya. Vanag, Zh. Obshch. Khim., 30, 3287 (1960).